资源类型

期刊论文 436

会议视频 15

会议信息 1

年份

2024 1

2023 24

2022 35

2021 26

2020 21

2019 25

2018 24

2017 21

2016 19

2015 19

2014 15

2013 12

2012 33

2011 28

2010 52

2009 17

2008 18

2007 17

2006 7

2005 6

展开 ︾

关键词

天然气 11

能源 8

勘探开发 7

普光气田 7

页岩气 5

天然气水合物 4

温室气体 4

中国 3

可持续发展 3

采油工程 3

三相界面 2

中国近海 2

低碳 2

光声 2

关键技术 2

分布特征 2

南海 2

发展方向 2

发展趋势 2

展开 ︾

检索范围:

排序: 展示方式:

Effect of exhaust gas recirculation and ethyl hexyl nitrate additive on biodiesel fuelled diesel engine

K. VENKATESWARLU, B. S. R MURTHY, V. V. SUBBARAO, K. Vijaya KUMAR

《能源前沿(英文)》 2012年 第6卷 第3期   页码 304-310 doi: 10.1007/s11708-012-0195-9

摘要: Cetane improvers reduce the ignition delay, which in turn reduces the combustion temperatures thereby reduce NO emissions. Exhaust gas recirculation (EGR) proved to be an effective way to reduce the NO emissions. In this present experimental work, a combination of exhaust gas recirculation and cetane improver ethyl hexyl nitrate (EHN) is used to investigate the performance and exhaust emissions of a single cylinder four stroke naturally aspirated direct injection and air cooled diesel engine. Test results show that the brake thermal efficiency increases with the increase in the percentage of EGR which is accompanied by a reduction in brake specific fuel consumption and exhaust gas temperatures, and that bio-diesel with cetane improver under 20% EGR reduces NO emissions by 33% when compared to baseline fuel without EGR. However carbon monoxide (CO), hydro carbon (HC) and smoke emissions increase with an increase in percentage of EGR.

关键词: additive     exhaust gas recirculation (EGR)     emissions     ethyl hexyl nitrate (EHN)     performance    

Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation

M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN

《能源前沿(英文)》 2017年 第11卷 第4期   页码 568-574 doi: 10.1007/s11708-017-0461-y

摘要: The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.

关键词: hydrogen     exhaust gas recirculation (EGR)     diesel     combustion     heat release rate (HRR)     combustion duration    

Transient emission simulation and optimization of turbocharged diesel engine

Lingge SUI, Zhongchang LIU, Yongqiang HAN, Jing TIAN

《能源前沿(英文)》 2013年 第7卷 第2期   页码 237-244 doi: 10.1007/s11708-013-0251-0

摘要: In order to alleviate the pressure of experimental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was established based on the multi-software coupling technologies of Matlab/Simulink, GT-Power, STAR-CD and artificial neural network. Aimed at the contradiction of NO and soot emission control with exhaust gas recirculation (EGR) of turbocharged diesel engine under transient operations, on this simulation platform, a transient EGR valve control strategy was proposed, which adjusted the EGR valve in adjacent level based on the feedback of its opening according soot control limit under transient operations. Simulation and experimental results prove that the transient emission optimization effect of this control strategy is obvious. On the one hand, compared with the previous control strategy, which closed the EGR valve during the whole transient operations, soot emission is slightly increased by 9.5%, but it is still 9% lower than the control limit. On the other hand, compared with the previous control strategy, NO transient emission is reduced by 44%.

关键词: diesel engine     transient simulation     emission     control strategy     exhaust gas recirculation (EGR)    

Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined withEGR

Jie WANG, Zuohua HUANG, Bing LIU, Xibin WANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 204-211 doi: 10.1007/s11708-009-0026-9

摘要: A numerical simulation of the influence of different hydrogen fractions, excess air ratios and EGR mass fractions in a spark-ignition engine was conducted. Good agreement between the calculated and measured in-cylinder pressure traces as well as pollutant formation trends was obtained. The simulation results show that NO concentration has an exponential relationship with temperature and increases sharply as hydrogen is added. EGR introduction strongly influences the gas temperature and NO concentration in the cylinder. The difference in temperature will lead to even greater difference in NO concentration. Thus, EGR can effectively decrease NO concentration. NO concentration reaches its peak value at the excess air ratio of 1.1 regardless of EGR mass fraction. The study shows that natural gas-hydrogen blend combined with EGR can realize a stable combustion and low NO emission in a spark-ignition engine.

关键词: natural gas     hydrogen     NO     exhaust gas recirculation     numerical simulation    

喷射策略对低负荷下天然气——柴油双燃料预混压燃燃烧的影响研究 Article

Hyunwook Park, Euijoon Shim, Choongsik Bae

《工程(英文)》 2019年 第5卷 第3期   页码 548-557 doi: 10.1016/j.eng.2019.03.005

摘要: 废气再循环(EGR)的引入通过推迟燃烧相位改善了燃料经济性并将NOx 和PM 排放降低至欧六(Euro Ⅵ)标准以下。结合40%天然气替代率,柴油两次喷射策略和中等EGR 率可以在低负荷工况下有效提高燃烧效率与指示效率,并降低HC和CO排放。

关键词: 双燃料     反应可控压燃     预混压燃     天然气     喷射策略     废气再循环    

Utilisation of waste heat from exhaust gases of drying process

Olga P. Arsenyeva,Lidija Čuček,Leonid L. Tovazhnyanskyy,Petro O. Kapustenko,Yana A. Savchenko,Sergey K. Kusakov,Oleksandr I. Matsegora

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 131-138 doi: 10.1007/s11705-016-1560-8

摘要: Nowadays a lot of low-grade heat is wasted from the industry through the off- and flue-gasses with different compositions. These gases provide the sensitive heat with utilisation potential and latent heat with the components for condensation. In this paper, process integration methodology has been applied to the partly condensed streams. A hot composite curve that represents the gas mixture cooling according to equation of state for real gases was drawn to account the gas-liquid equilibrium. According to the pinch analysis methodology, the pinch point was specified and optimal minimal temperature difference was determined. The location of the point where gas and liquid phases can be split for better recuperation of heat energy within heat exchangers is estimated using the developed methodology. The industrial case study of tobacco drying process off-gasses is analysed for heat recovery. The mathematical model was developed by using MathCad software to minimise the total annualised cost using compact plate heat exchangers for waste heat utilisation. The obtained payback period for the required investments is less than six months. The presented method was validated by comparison with industrial test data.

关键词: exhaust gas     waste heat     process integration     plate heat exchanger    

Numerical study of EGR effects on reducing the pressure rise rate of HCCI engine combustion

Gen CHEN, Norimasa IIDA, Zuohua HUANG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 376-385 doi: 10.1007/s11708-010-0118-6

摘要: The effects of the inert components of exhaust gas recirculation (EGR) gas on reducing the pressure rise rate of homogeneous charge compression ignition engine combustion were investigated numerically by utilizing the CHEMKIN II package and its SENKIN code, as well as Curran’s dimethyl ether reaction scheme. Calculations were conducted under constant volume combustion and engine combustion (one compression and one expansion only, respectively) conditions. Results show that with constant fuel amount and initial temperature and pressure, as EGR ratio increases, combustion timings are retarded and the duration of thermal ignition preparation extends non-linearly; peak values of pressure, pressure rising rate (PRR), and temperature decrease; and peak values of heat release rate in both low temperature heat release (LTHR) and high temperature heat release decrease. Moreover, maximum PRR decreases as CA50 is retarded. With constant fuel amount, mixtures with different EGR ratios can obtain the same CA50 by adjusting the initial temperature. Under the same CA50, as EGR ratio increases, the LTHR timing is advanced and the duration of thermal ignition preparation is extended. Maximum PRR is almost constant with the fixed CA50 despite the change in EGR ratio, indicating that the influence of EGR dilution on chemical reaction rate is offset by other factors. Further investigation on the mechanism of this phenomenon is needed.

关键词: HCCI engine     combustion     EGR     DME     CA50     PRR    

Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1662-8

摘要:

● A single particle observation was conducted in a high traffic flow road environment.

关键词: Non-exhaust emissions     SPAMS     PMF     Roadside environment    

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

《能源前沿(英文)》 2011年 第5卷 第4期   页码 398-403 doi: 10.1007/s11708-011-0157-7

摘要: In the present experiment, a computerized single cylinder diesel engine with a data acquisition system was used to study the effects of oxygen enriched combustion technology (OECT) on the performance characteristics. The use of different levels of oxygen-enriched air was compared with respect to percentage load. Increasing the oxygen content in the air leads to faster burn rates and increases the combustibility at the same stoichiometry (oxygen-to-fuel ratio). These effects have the potential to increase the thermal efficiency and specific power output of a diesel engine. The power increases considerably with oxygen enrichment. In addition, oxygen enrichment can also be considered as a way to reduce the sudden loss in power output when the engine operates in a high load condition. Assessed high combustion temperature from the oxygen enriched combustion leads to high combustion efficiency. OECT reduces the volume of flue gases and reduces the effects of greenhouse effects. Engine tests were conducted in the above said engine for different loads and the following performance characteristics like brake power (BP), specific fuel consumption (SFC), mean effective pressure, brake thermal efficiency, mechanical efficiency, and exhaust gas temperature were studied. The objective of this paper is to address, in a systematic way, the key technical issues associated with applying OECT to single cylinder diesel engines.

关键词: oxygen enriched combustion     exhaust gas temperature     brake power (BP)     specific fuel consumption (SFC)    

Effects of EGR on combustion process of DI diesel engine during cold start

PENG Haiyong, CUI Yi, SHI Lei, DENG Kangyao

《能源前沿(英文)》 2008年 第2卷 第2期   页码 202-210 doi: 10.1007/s11708-008-0038-x

摘要: Experiments on the effects of external and internal exhaust gas recirculation (EGR) on combustion and emission performance during a cold start process were investigated in a 135 single-cylinder DI diesel engine. Combustion was improved during the initial ignition cycles by introducing internal or external EGR. The addition of an appropriate amount of internal or external EGR can promote the combustion stability significantly. However, excessive amounts of external EGR could lead to extremely unstable combustion or even misfiring. An appropriate amount of internal or external EGR decreased smoke opacity effectively during a cold start. External EGR reduced NO emissions effectively while internal EGR led to an increase in NO emissions due to thermal effects.

关键词: opacity     combustion     excessive     NO     process    

Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat

Yiji LU, Anthony Paul ROSKILLY, Long JIANG, Longfei CHEN, Xiaoli YU

《能源前沿(英文)》 2017年 第11卷 第4期   页码 527-534 doi: 10.1007/s11708-017-0516-0

摘要: The development of engine waste heat recovery technologies attracts ever increasing interests due to the rising strict policy requirements and environmental concerns. This paper presented the study of engine coolant and exhaust heat recovery using organic Rankine cycle (ORC). Eight working fluids were selected to evaluate and compare the performance of the integrated waste heat recovery system. Rather than the conventional engine ORC system mainly focusing on the utilization of exhaust energy, this work proposed to fully use the engine coolant energy by changing the designed parameters of the ORC system. The case study selected a small engine as the heat source to drive the ORC system using a scroll expander for power production. The evaluation results suggest that under the engine rated condition, the solution to fully recover the engine coolant energy can achieve a higher power generation performance than that of the conventional engine ORC system. The results suggest that adding a recuperator to the ORC system can potentially improve the system performance when the working fluids are dry and the overall dumped heat demand of the system can be reduced by 12% under optimal conditions. When the ORC evaporating and condensing temperature are respectively set at 85°C and 30°C, the integrated engine waste heat recovery system can improve the overall system efficiency by 9.3% with R600, R600a or -Pentane as the working fluid.

关键词: organic Rankine cycle     scroll expander     coolant and exhaust recovery     internal combustion engine    

Experimental study on velocity characteristics of recirculation zone in humid air non-premixed flame

GU Xin, ZANG Shusheng, GE Bing

《能源前沿(英文)》 2008年 第2卷 第2期   页码 140-144 doi: 10.1007/s11708-008-0037-y

摘要: To examine the effect of the flow field within the recirculation zone on flame structure, the characteristic velocity fields of methane/humid air flame in non-premixed combustion behind a disc bluff-body burner were experimentally studied by particle image velocimeter (PIV).The results show that two stagnation points exist on the centerline in the recirculation zone flame. However, the distance of the two stagnation points in humid air combustion shortens, and the minimal dimensionless velocity increases compared with the conventional non-humid air combustion. In addition, the positional curves of the minimal velocities can be partitioned into three phases representing three different flame patterns. The analysis of axial minimal velocities on the centerline and their positions under different co-flow air velocity conditions reveals that fuel-to-air velocity ratio is the crucial parameter that governs humid air combustion flame characteristics.

关键词: distance     bluff-body     fuel-to-air velocity     stagnation     parameter    

Achievement of high rate nitritation with aerobic granular sludge reactors enhanced by sludge recirculation

Zulkifly JEMAAT,Josep Anton TORA,Albert BARTROLI,Julián CARRERA,Julio PEREZ

《环境科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 528-533 doi: 10.1007/s11783-014-0641-5

摘要: A ratio control strategy has been used to demonstrate the feasibility of this automatic control procedure for the achievement of stable full and partial nitritation. The control strategy assured constant ratio between the dissolved oxygen (DO) and the total ammonia nitrogen (TAN) concentrations in the bulk liquid of aerobic granular sludge reactors operating in continuous mode. Three different set-ups with different reactor capacities were used (3, 110, and 150 L). High strength synthetic wastewaters and reject water were tested with similar performance. Achieved nitrogen loading rates ranged between 0.4 and 6.1 kgN·m ·d , at temperatures between 20°C and 30°C. Granular sludge and nitritation were stable in the long term continuous operation of the reactors. Suitable stable effluent for Anammox has been obtained using the desired TAN setpoint (i.e. 50% of influent ammonium oxidation). An existing biofilm model developed incorporating the implemented control loops and validated in a previous publication was used to investigate the effects of the ammonium concentration of the influent and the biofilm density on the achievement of full nitritation. The model demonstrated how sludge recirculation events led to a stable and significant increase of the biomass concentration in the reactor, which in turn resulted in the achievement of high nitrogen loading rates, due to the action of the control strategy. The model predicted an enhancement of stable full nitritation at higher ammonium concentrations in the influent. Poor influence of the biofilm density in the achievement of full nitritation was predicted with the model.

关键词: partial nitrification     reject water     high strength ammonium wastewater     closed-loop control    

Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust

Peng GAO, Liwei WANG, Ruzhu WANG, Yang YU

《能源前沿(英文)》 2017年 第11卷 第4期   页码 516-526 doi: 10.1007/s11708-017-0511-5

摘要: A solid sorption combined cooling and power system driven by exhaust waste heat is proposed, which consists of a MnCl sorption bed, a CaCl sorption bed, an evaporator, a condenser, an expansion valve, and a scroll expander, and ammonia is chosen as the working fluid. First, the theoretical model of the system is established, and the partitioning calculation method is proposed for sorption beds. Next, the experimental system is established, and experimental results show that the refrigerating capacity at the refrigerating temperature of –10°C and the resorption time of 30 min is 1.95 kW, and the shaft power is 109.2 W. The system can provide approximately 60% of the power for the evaporator fan and the condenser fan. Finally, the performance of the system is compared with that of the solid sorption refrigeration system. The refrigerating capacity of two systems is almost the same at the same operational condition. Therefore, the power generation process does not influence the refrigeration process. The exergy efficiency of the two systems is 0.076 and 0.047, respectively. The feasibility of the system is determined, which proves that this system is especially suitable for the exhaust waste heat recovery.

关键词: solid sorption     exhaust waste heat     combined cooling and power system     exergy efficiency    

Exhaust hood for steam turbines-single-flow arrangement

Michal HOZNEDL , Ladislav TAJC , Jaroslav KREJCIK , Lukas BEDNAR , Kamil SEDLAK , Jiri LINHART ,

《能源前沿(英文)》 2009年 第3卷 第3期   页码 321-329 doi: 10.1007/s11708-009-0039-4

摘要: In the past, increased attention was given to the development of an optimal shape for the inlet part of LP turbine casings in SKODA POWER. A double-flow design is typically used for high power output turbines. An optimized shape for the internal diffuser has been found, which transforms the kinetic energy of steam into increased pressure, thus effectively increasing the thermodynamic efficiency of the stage. Some conclusions have been drawn from laboratory experiments, others derived directly from on-site measurements at power plants. The conclusions from the development of double-flow turbines form the basis for the design of the single-flow turbine arrangement. Single-flow design is typically used for lower output turbines. There are still some limitations in applying this arrangement. The designer needs to resolve the bearing position and how to ensure access to them. Reinforcing the ribs and supports are used, therefore, to ensure the rigidity of the entire casing. The optimization of the single-flow diffuser shape is therefore the subject of the study presented below.

关键词: exhaust hood     steam turbines     single-flow arrangement    

标题 作者 时间 类型 操作

Effect of exhaust gas recirculation and ethyl hexyl nitrate additive on biodiesel fuelled diesel engine

K. VENKATESWARLU, B. S. R MURTHY, V. V. SUBBARAO, K. Vijaya KUMAR

期刊论文

Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation

M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN

期刊论文

Transient emission simulation and optimization of turbocharged diesel engine

Lingge SUI, Zhongchang LIU, Yongqiang HAN, Jing TIAN

期刊论文

Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined withEGR

Jie WANG, Zuohua HUANG, Bing LIU, Xibin WANG

期刊论文

喷射策略对低负荷下天然气——柴油双燃料预混压燃燃烧的影响研究

Hyunwook Park, Euijoon Shim, Choongsik Bae

期刊论文

Utilisation of waste heat from exhaust gases of drying process

Olga P. Arsenyeva,Lidija Čuček,Leonid L. Tovazhnyanskyy,Petro O. Kapustenko,Yana A. Savchenko,Sergey K. Kusakov,Oleksandr I. Matsegora

期刊论文

Numerical study of EGR effects on reducing the pressure rise rate of HCCI engine combustion

Gen CHEN, Norimasa IIDA, Zuohua HUANG,

期刊论文

Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer

期刊论文

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

期刊论文

Effects of EGR on combustion process of DI diesel engine during cold start

PENG Haiyong, CUI Yi, SHI Lei, DENG Kangyao

期刊论文

Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat

Yiji LU, Anthony Paul ROSKILLY, Long JIANG, Longfei CHEN, Xiaoli YU

期刊论文

Experimental study on velocity characteristics of recirculation zone in humid air non-premixed flame

GU Xin, ZANG Shusheng, GE Bing

期刊论文

Achievement of high rate nitritation with aerobic granular sludge reactors enhanced by sludge recirculation

Zulkifly JEMAAT,Josep Anton TORA,Albert BARTROLI,Julián CARRERA,Julio PEREZ

期刊论文

Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust

Peng GAO, Liwei WANG, Ruzhu WANG, Yang YU

期刊论文

Exhaust hood for steam turbines-single-flow arrangement

Michal HOZNEDL , Ladislav TAJC , Jaroslav KREJCIK , Lukas BEDNAR , Kamil SEDLAK , Jiri LINHART ,

期刊论文